Structural and Physical Properties of λ -(BEST)₂MCl₄ (BEST = Bis(ethylenediseleno)tetrathiafulvalene; M = Fe, Ga) and Analogous Magnetic Organic Conductor

Heng Bo Cui, Saika Otsubo, Yoshinori Okano, and Hayao Kobayashi* Institute for Molecular Science and CREST, JST, Myodaiji, Okazaki 444-8585

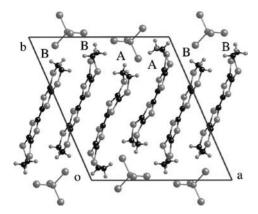
(Received October 18, 2004; CL-041217)

In contrast to λ -(BETS)₂MCl₄ (M = Fe, Ga) with superconducting (Ga) or π -d coupled antiferromagnetic insulating (Fe) ground states, λ -(BEST)₂MCl₄ (M = Ga, Fe) are semiconducting at ambient pressure despite of the close similarity of the crystal structures. There exists another triclinic modification of BEST conductor with FeBr₄⁻ exhibiting metal-insulator and antiferromagnetic transitions.

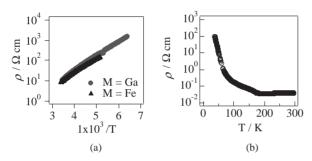
Recently, the development of magnetic organic conductors has attracted a considerable interest because unprecedented organic conductors such as antiferromagnetic organic superconductor, K-(BETS)₂FeBr₄, magnetic field-induced superconductor, λ -(BETS)₂FeCl₄ and ferromagnetic organic metal, (ET)₃- $[MnCr(C_2O_4)_3](CH_2Cl_2)$ have been discovered (BETS = bis-(ethylenedithio)tetraselenafulvalene; ET = (ethylenedithio)tetrathiafulvalene). 1-3 However, no conductor except BETS systems exhibits distinct dual-functional electro-magnetic properties originated from the interplay of π metal electrons and localized 3d magnetic moments. Considering that the close contacts between chalcogen atoms and magnetic anions are essential to enhance the π -d interaction, π donor molecule, BEST (bis(ethylenediseleno)tetrathiafulvalene) with protruded Se atoms in the six-membered rings might be a suitable π donor to construct new magnetic organic conductors. Since fascinating magnetic organic conductors have been found in BETS conductors with λ - and κ -type structures, we have tried to prepare similar crystals by using BEST, an isomer of BETS.

In contrast to BETS conductors, BEST conductors hitherto developed are mostly nonmetallic. Among them, κ -(BEST)₂-Cu[N(CN)₂]Br with two-dimensional metallic bands exhibited a metal–insulator transition at 25 K at ambient pressure and a superconducting transition at 7.5 K around 1.5 k bar. Similar κ -type conductors, κ -(D)₂Cu[N(CN)₂]Br [D = ET, MT (bis-(methylenedithio))tetrathiafulvalene), BETS⁸] are superconducting or metallic down to low temperatures at ambient pressure. Compared with κ -type salts, λ -type conductors are hardly obtainable owing to the inflexible accommodation space for the anion. If the λ -type crystal of (BEST)₂FeCl₄ can be obtained, it will provide a crucial information to make clear the reason why the unique π -d coupled electro-magnetic properties could be realized in λ -(BETS)₂FeCl₄.

BEST was prepared according to the literature method. ¹⁰ Similar to the case of BETS conductors, the black needle crystals of $\mathrm{MCl_4}^-$ salts (M = Fe, Ga) were grown electrochemically. X-ray diffraction experiments revealed that the crystals have λ -type lattices. The lattice constants are listed in Table 1. The final $R(R_\mathrm{w})$ factors are 0.033(0.029) and 0.032(0.031) for M = Fe and Ga, respectively. The unit cell volumes (V) of these two BEST


Table 1. The lattice constants of λ -type BEST salts. Those of λ -(BETS)₂FeCl₄ are also presented for comparison^{11,12}

$$\begin{pmatrix}
Se \\
Se
\end{pmatrix} = S \\
S \\
Se$$


$$Se$$

	λ -(BEST) ₂ GaCl ₄	λ -(BEST) ₂ FeCl ₄	λ -(BETS) ₂ FeCl ₄
а	16.362(4) Å	16.399(5)	16.164
b	18.226(4)	18.178(5)	18.538
c	6.724(2)	6.725(2)	6.593
α	97.205(2)°	97.185(3)	98.40
β	97.831(2)	97.797(3)	96.67
γ	112.263(2)	112.230(3)	112.52
V	$1803.8(7) \text{Å}^3$	1804.1(9)	1773.0


salts are almost equal to each other but about 30 Å³ larger than the unit cell volume of λ -(BETS)₂FeCl₄, which is a serious disadvantage for λ -type BEST salts because it is well known that the "negative chemical pressure" due to the Br/Cl exchange in λ -(BETS)₂MBr_xCl_{4-x} makes the system insulating. For example, λ -(BETS)₂MBrCl₃ with unit cell volume about 15 Å³ larger than that of λ -(BETS) $_2$ MCl $_4$ is an insulator. 13,14 Moreover, unlike λ -(BETS)₂MBr_xCl_{4-x}, where the lattice constants b and c are almost independent of x, the lattice constant b of λ -(BEST)₂MCl₄ is smaller than that of λ -(BETS)₂MCl₄, which means the "negative chemical pressure" is considered to be fairly large in the ac conduction plane of λ -(BEST)₂MCl₄. The crystal structure is shown in Figure 1. There are two crystallographically independent BEST molecules (A, B), which are stacked to form the tetrameric colums along the a axis. Similar to λ -(BETS)₂MCl₄, each tetrahalide anion is surrounded by the donor molecules. There are many short Cl...Se (S) contacts (see the caption of Figure 1). The short contact between Cl atom and chalcogen atom (S) of inner five-membered ring is one of the characteristic structural features of λ -type salt. The four-probe resistivity measurements were made along the c axes (// needle axes of the crystals). The both salts showed almost the same resistivity behavior: $\sigma(RT) = 10^{-1} \, \text{S cm}^{-1}$ and $E_a = 0.13 \, \text{eV}$ (Figure 2). The conventional extended Hückel tight-binding band calculations were performed. 15 The amplitude of the highest occupied molecular orbital (HOMO) of molecule A was very small at the Se atoms where BEST molecule is strongly bent from the average molecular plane (Figure 3). Similar to λ - $(BETS)_2FeBr_xCl_{4-x}$ (x > 0.8), λ - $(BEST)_2FeCl_4$ is semiconducting despite of the calculated Fermi surfaces. The magnetic susceptibility measurements by SQUID magnetometer down to 2 K showed the Curie-Weiss behavior of the localized magnetic moments of Fe³⁺ ions (S = 5/2). The Weiss temperature was

Figure 1. Crystal structure of λ -(BEST)₂FeCl₄. The intermolecular short contacts (Å) less than the corresponding van der Waals distances are: Se...Se, 3.539, 3.588, 3.594, 3.683, 3.707, 3.943, 3.996; Se...S, 3.563, 3.631, 3.738, 3.757; S...S, 3.568, 3.624; Se...Cl, 3.287, 3.540, 3.586, 3.736, 3.748; S...Cl, 3.641. λ -(BEST)₂GaCl₄ has almost the same crystal structure.

Figure 2. (a) Resistivity of λ -(BEST)₂MCl₄ (M = Fe, Ga) and (b) (BEST)₂FeBr₄.

Figure 3. (a) HOMO of two independent molecules A and B of λ -(BEST)₂FeCl₄. (b) Fermi surface of λ -(BEST)₂FeCl₄ calculated by extended Hückel tight-binding approximation.

 $\theta=-8.2$ K. Preliminary high-pressure resistivity measurements up to about 10 kbar showed large resistivity decrease but the system was still semiconducting. Further studies will be made in near future.

We have also obtained another triclinic modification, (BEST)₂FeBr₄. The lattice constants are: a=6.175(3), b=8.335(4), c=33.32(2) Å, $\alpha=89.426(11)$, $\beta=89.148(11)$, $\gamma=94.634(19)^\circ$, V=1856.4(16) Å³, Z=2. The unit cell volume is almost equal to that of λ' -(BETS)₂GaBr₄ with modified λ -type structure (V=1851.5 Å³). ¹⁶ There are two independent weakly dimeric columns along the b axis. As shown in Figure 2,

the resistivity showed a metallic behavior ($\sigma(RT) = 25 \, S \, cm^{-1}$) but exhibited a transition around 180 K where the resistivity showed an anomaly and began to increase gradually with lowering temperature. Below about 60 K, the resistivity was increased rapidly. The magnetic susceptibility measurements on polycrystalline sample down to 1.9 K showed a slight maximum around 4 K, suggesting the antiferromagnetic ordering of Fe³⁺ moments ($T_N \approx 4 \, K$). An isostructural (BEST)₂InBr₄ also showed a metallic behavior around the room temperature.

This work was supported by CREST (Core Research for Evolutional Science and Technology) of JST (Japan Science and Technology Corporation).

References and Notes

- E. Ojima, H. Fujiwara, K. Kato, H. Kobayashi, H. Tanaka, A. Kobayashi, M. Tokumoto, and P. Cassoux, J. Am. Chem. Soc., 121, 5581 (1999); H. Fujiwara, E. Ojima, Y. Nakazawa, B. Zh. Narymbetov, K. Kato, H. Kobayashi, A. Kobayashi, M. Tokumoto, and P. Cassoux, J. Am. Chem. Soc., 123, 306 (2001).
- 2 S. Uji, H. Shinagawa, T. Terashima, C. Terakura, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, *Nature*, 410, 908 (2001); H. Fujiwara, H. Kobayashi, E. Fujiwara, and A. Kobayashi, *J. Am. Chem. Soc.*, 124, 6816 (2002).
- E. Coronado, J. R. Galán-Mascarós, C. J. Gómez-García, and V. Laukhin, *Nature*, 408, 447 (2000).
- 4 For example, H. H. Wang, L. K. Montgomery, U. Geiser, L. C. Porter, K. D. Carlson, J. R. Ferraro, J. M. Williams, C. S. Cariss, R. L. Rubinstein, J. R. Whitworth, M. Evain, J. Novoa, and M.-H. Whangbo, *Chem. Mater.*, 1, 140 (1989); R. N. Lyubovskaya, E. I. Zhilyaeva, S. A. Torunova, O. A. Bogdanova, S. V. Konovalikhin, O. A. Dyachenko, and R. B. Lyubovskii, *Synth. Met.*, 85, 1581 (1997).
- 5 J. Sakata, H. Sato, A. Miyazaki, T. Enoki, Y. Okano, and R. Kato, Solid State Commun., 108, 377 (1998).
- 6 A. M. Kini, U. Geiser, H. H. Wang, K. D. Carlson, J. M. Williams, W. K. Kwok, K. G. Vandervoort, J. E. Thompson, D. L. Stupka, D. Jung, and M.-H. Whangbo, *Inorg. Chem.*, 29, 2555 (1990).
- 7 T. Naito, K. Bun, A. Miyamoto, H. Kobayashi, H. Sawa, R. Kato, and A. Kobayashi, Synth. Met., 56, 2234 (1993).
- 8 The resistivity behavior and the lattice constants of κ-(BETS)₂-Cu[N(CN)₂]Br were reported by Montgomery et al. (L. K. Montgomery, T. Burgin, J. C. Huffman, K. D. Carlson, J. D. Dudek, G. A. Yaconi, L. A. Megna, P. R. Mobley, W. K. Kwok, J. M. Williams, J. E. Schirber, D. L. Overmyer, J. Ren, C. Rovira, and M.-H. Whangbo, *Synth. Met.*, 56, 2090 (1993)). Despite of the sample dependence, one sample showed κ-(BETS)₂Cu[N(CN)₂]-Br to be metallic down to low temperature.
- H. Kobayashi, H. Cui, and A. Kobayashi, *Chem. Rev.*, **104**, 5256 (2004).
- 10 V. Y. Lee, Synth. Met., 20, 161 (1987).
- 11 A. Kobayashi, T. Udagawa, H. Tomita, T. Naito, and H. Kobayashi, *Chem. Lett.*, **1993**, 2179.
- 12 H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, and P. Cassoux, *J. Am. Chem. Soc.*, **118**, 368 (1996).
- 13 H. Kobayashi, H. Akutsu, E. Arai, H. Tanaka, and A. Kobayashi, *Phys. Rev.*, **B56**, R8526 (1997); H. Tanaka, A. Kobayashi, A. Sato, H. Akutsu, and H. Kobayashi, *J. Am. Chem. Soc.*, **121**, 760 (1999).
- 14 H. Akutsu, K. Kato, E. Ojima, H. Kobayashi, H. Tanaka, A. Kobayashi, and P. Cassoux, *Phys. Rev.*, **B58**, 9294 (1998).
- 15 The exponents ζ and the ionizatiom potential (eV) for atomic orbitals are: Se 4s, 2.122, -20.0; Se 4p, 1.827, -11.0; S 3s, 2.122, -22.0; S 3p, 1.827, -10.5; C 2s, 1.625, -21.4; C 2p, 1.625, -11.4; H 1s, 1.0, -13.6.
- 16 H. Tanaka, A. Kobayashi, and H. Kobayashi, Chem. Lett., 1999, 133.